login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362057
Number of compositions of n that are anti-palindromic modulo 3.
1
1, 1, 1, 3, 5, 7, 15, 27, 43, 81, 147, 249, 449, 809, 1409, 2507, 4485, 7903, 14015, 24963, 44187, 78329, 139203, 246801, 437601, 776881, 1378081, 2444083, 4337125, 7694487, 13648655, 24215947, 42962283, 76213761, 135212947, 239883849, 425562849, 754987929
OFFSET
0,4
COMMENTS
A composition (c(1), c(2), ..., c(k)) is anti-palindromic modulo 3 if c(i) and c(k+1-i) are not congruent modulo 3 whenever 1 <= i <= k/2.
LINKS
Jia Huang, Partially Palindromic Compositions, Journal of Integer Sequences, Vol. 26 (2023), Article 23.4.1.
FORMULA
a(n) = Sum_{3*i + j + 2*r + 2*s + 3*d = n} (-1)^r * 2^i * binomial(i+j,j) * binomial(i,r) * binomial(i+s-1,s) * binomial(i+d-1,d).
G.f.: (1 - x^3)/(1 - x - 3*x^3 + x^4).
EXAMPLE
There are a(5) = 7 compositions of n = 5 that are anti-palindromic modulo 3: 5, 32, 23, 311, 113, 221, 122. Note that 41 and 14 are anti-palindromic but not anti-palindromic modulo 3.
PROG
(PARI) a(n) = {sum(i=0, n\3, sum(d=0, (n-3*i)\3, sum(s=0, (n-3*i-3*d)\2, 2^i * binomial(i+s-1, s) * binomial(i+d-1, d) * sum(r=0, (n-3*i-3*d-2*s)\2, my(j=n-3*i-3*d-2*s-2*r); (-1)^r * binomial(i+j, j) * binomial(i, r) ))))} \\ Andrew Howroyd, Apr 10 2023
(PARI) Vec((1 - x^3)/(1 - x - 3*x^3 + x^4) + O(x^41)) \\ Andrew Howroyd, Apr 11 2023
(PARI) my(p=Mod('x, 'x^4-'x^3-3*'x+1)); a(n) = vecsum(Vec(lift(p^(n+1)))); \\ Kevin Ryde, Apr 12 2023
CROSSREFS
Cf. A000213 (anti-palindromic compositions), A362055.
Sequence in context: A061950 A166093 A165785 * A261646 A303027 A217615
KEYWORD
nonn,easy
AUTHOR
Jia Huang, Apr 06 2023
STATUS
approved