login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217615
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).
8
1, 1, 1, 3, 5, 7, 15, 29, 49, 95, 187, 345, 659, 1289, 2465, 4739, 9237, 17911, 34715, 67705, 132063, 257477, 503309, 984983, 1927895, 3778017, 7411237, 14544967, 28565661, 56144615, 110406527, 217225533, 427636561, 842256047, 1659600955, 3271579689, 6451913519
OFFSET
0,4
COMMENTS
Radius of convergence of g.f. is r = 1/2.
More generally, given
A(x) = Sum_{n>=1} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k),
then A(x) = 1/sqrt( (1 - t*x + 2*x^2)^2 - 4*x^2 )
and the radius of convergence r satisfies: (1-r)^2 = r*(t-r) for t > 0.
a(n) is the number of (2k-1)-element subsets of {1, 2, ..., n+1} whose k-th smallest (i.e., k-th largest) element equals 2k-1. - Darij Grinberg, Oct 09 2019
LINKS
FORMULA
G.f.: A(x) = 1 / sqrt( (1 - x + 2*x^2)^2 - 4*x^2 ).
G.f.: A(x) = 1 / sqrt( (1-x)*(1-2*x)*(1+x+2*x^2) ).
G.f. satisfies: A(x) = (1 + 2*x^2*Sum_{n>=0} A000108(n)*(-x*A(x))^(2*n)) / (1-x+2*x^2) where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.
a(n) ~ 2^n/sqrt(Pi*n). - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k, k) * binomial(n-2*k, k). - Darij Grinberg, Oct 09 2019
a(n) = hypergeom([1/2,(1-n)/3,(2-n)/3, -n/3], [1, (1-n)/2, -n/2], -27)) for n >= 4. - Peter Luschny, Oct 09 2019
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 15*x^6 + 29*x^7 + 49*x^8 + ...
where the g.f. equals the series:
A(x) = 1 +
x*((1-x) + x) +
x^2*((1-x)^2 + 2^2*x*(1-x) + x^2) +
x^3*((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3) +
x^4*((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4) +
x^5*((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5) + ...
MAPLE
a := n -> `if`(n < 4, [1, 1, 1, 3][n+1], hypergeom([1/2, (1-n)/3, (2-n)/3, -n/3], [1, (1-n)/2, -n/2], -27)):
seq(simplify(a(n)), n=0..36); # Peter Luschny, Oct 09 2019
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) a(n)={sum(k=0, n\2, binomial(2*k, k) * binomial(n-2*k, k))} \\ Andrew Howroyd, Oct 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2012
STATUS
approved