login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362055
Number of compositions of n that are anti-palindromic modulo 2.
1
1, 1, 1, 3, 3, 7, 11, 17, 33, 49, 89, 147, 243, 423, 691, 1185, 1985, 3329, 5649, 9443, 15971, 26855, 45179, 76209, 128097, 215921, 363433, 611827, 1030611, 1734599, 2921443, 4918593, 8281473, 13945473, 23478689, 39535299, 66566851, 112082503, 188725611
OFFSET
0,4
COMMENTS
A composition (c(1), c(2), ..., c(k)) is anti-palindromic modulo 2 if c(i) and c(k+1-i) are not congruent modulo 2 whenever 1 <= i <= k/2.
LINKS
Jia Huang, Partially Palindromic Compositions, Journal of Integer Sequences, Vol. 26 (2023), Article 23.4.1.
FORMULA
a(n) = Sum_{3*i + j + r + 2*s + 2*d = n} (-1)^r * 2^i * binomial(i+j,j) * binomial(i,r) * binomial(i+s-1,s) * binomial(i+d-1,d).
G.f.: (1+x-x^2-x^3)/(1-2*x^2-2*x^3+x^4).
EXAMPLE
There are a(4) = 3 compositions of n = 4 that are anti-palindromic modulo 2: 4, 211, and 112. Although 31 and 13 are anti-palindromic, they are not anti-palindromic modulo 2.
PROG
(PARI) a(n) = {sum(i=0, n\3, sum(s=0, (n-3*i)\2, sum(d=0, (n-3*i)\2-s, 2^i * binomial(i+s-1, s) * binomial(i+d-1, d) * sum(j=0, n-3*i-2*d-2*s, my(r=n-3*i-2*d-2*s-j); (-1)^r * binomial(i+j, j) * binomial(i, r) ))))} \\ Andrew Howroyd, Apr 10 2023
(PARI) Vec((1 + x - x^2 - x^3)/(1 - 2*x^2 - 2*x^3 + x^4) + O(x^41)) \\ Andrew Howroyd, Apr 11 2023
(PARI) my(p=Mod('x, 'x^4-2*'x^2-2*'x+1)); a(n) = vecsum(Vec(lift(p^(n+1)))); \\ Kevin Ryde, Apr 12 2023
CROSSREFS
Cf. A000213 (number of anti-palindromic compositions), A362057.
Sequence in context: A305099 A292141 A374687 * A358827 A022403 A082550
KEYWORD
nonn,easy
AUTHOR
Jia Huang, Apr 06 2023
STATUS
approved