Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 10 2023 00:11:58
%S 1,1,1,3,5,7,15,27,43,81,147,249,449,809,1409,2507,4485,7903,14015,
%T 24963,44187,78329,139203,246801,437601,776881,1378081,2444083,
%U 4337125,7694487,13648655,24215947,42962283,76213761,135212947,239883849,425562849,754987929
%N Number of compositions of n that are anti-palindromic modulo 3.
%C A composition (c(1), c(2), ..., c(k)) is anti-palindromic modulo 3 if c(i) and c(k+1-i) are not congruent modulo 3 whenever 1 <= i <= k/2.
%H Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, Journal of Integer Sequences, Vol. 26 (2023), Article 23.4.1.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-1).
%F a(n) = Sum_{3*i + j + 2*r + 2*s + 3*d = n} (-1)^r * 2^i * binomial(i+j,j) * binomial(i,r) * binomial(i+s-1,s) * binomial(i+d-1,d).
%F G.f.: (1 - x^3)/(1 - x - 3*x^3 + x^4).
%e There are a(5) = 7 compositions of n = 5 that are anti-palindromic modulo 3: 5, 32, 23, 311, 113, 221, 122. Note that 41 and 14 are anti-palindromic but not anti-palindromic modulo 3.
%o (PARI) a(n) = {sum(i=0, n\3, sum(d=0, (n-3*i)\3, sum(s=0, (n-3*i-3*d)\2, 2^i * binomial(i+s-1,s) * binomial(i+d-1,d) * sum(r=0, (n-3*i-3*d-2*s)\2, my(j=n-3*i-3*d-2*s-2*r); (-1)^r * binomial(i+j,j) * binomial(i,r) ))))} \\ _Andrew Howroyd_, Apr 10 2023
%o (PARI) Vec((1 - x^3)/(1 - x - 3*x^3 + x^4) + O(x^41)) \\ _Andrew Howroyd_, Apr 11 2023
%o (PARI) my(p=Mod('x, 'x^4-'x^3-3*'x+1)); a(n) = vecsum(Vec(lift(p^(n+1)))); \\ _Kevin Ryde_, Apr 12 2023
%Y Cf. A000213 (anti-palindromic compositions), A362055.
%K nonn,easy
%O 0,4
%A _Jia Huang_, Apr 06 2023