login
A362066
Primes associated with the indices in A362060.
2
17, 12491, 14723, 42437, 57089, 58193, 61051, 63131, 63347, 64553, 64567, 64577, 64591, 64601, 64661, 64679, 64951, 65071, 65173, 65293, 65881, 66863, 69931, 79817, 99551, 129083, 165103, 263071, 284833, 1407647, 1515259, 4303027, 6440999, 14968819, 95517973, 527737957, 1893230839, 1950929941, 1964567161
OFFSET
1,1
COMMENTS
Is this the same as A114924, or are there base-10 expressions of pi(p) which become p after striking 2 or more digits? - R. J. Mathar, Apr 18 2023
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..54 (n=1..50 from Jean-Marc Rebert)
PROG
(Python)
from sympy import sieve
def okA362060(n):
p = sieve[n]
while n and p:
if n%10 == p%10:
n //= 10
p //= 10
return n == 0
print([sieve[k] for k in range(1, 10**6) if okA362060(k)]) # Michael S. Branicky, Apr 07 2023
(Python)
from sympy import prime, nextprime
from itertools import count, islice
def A362066_gen(startvalue=1): # generator of terms >= startvalue
p = prime(max(startvalue, 1))
for k in count(max(startvalue, 1)):
c = iter(str(p))
if all(map(lambda b:any(map(lambda a:a==b, c)), str(k))):
yield p
p = nextprime(p)
A362066_list = list(islice(A362066_gen(), 20)) # Chai Wah Wu, Apr 07 2023
CROSSREFS
Cf. A362060.
Sequence in context: A203678 A257044 A114924 * A300596 A308962 A191964
KEYWORD
nonn,base
AUTHOR
Jean-Marc Rebert, Apr 07 2023
STATUS
approved