login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271973
Smallest number k such that gcd(s1, s2) = n, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) trajectory of k.
1
1, 10, 9, 30, 65, 5, 74, 86, 368, 135, 970, 50, 95, 101, 1045, 178, 793, 7, 214, 196, 18, 423, 133, 200, 2572, 629, 621, 358, 700, 451, 3167, 1924, 3611, 1926, 662, 510, 6688, 437, 1525, 5072, 3724, 3161, 1034, 240, 5848, 2487, 704, 442, 19120, 1230, 5138, 3524
OFFSET
1,2
EXAMPLE
a(6) = 5 because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16+8+4+2 = 30 => gcd(6,30) = 6.
MAPLE
nn:=10^8:
for n from 1 to 60 do:
ii:=0:
for k from 1 to nn while(ii=0) do:
kk:=1:m:=k:T[kk]:=k:it:=0:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
m:=m/2:kk:=kk+1:T[kk]:=m:
else
m:=3*m+1:kk:=kk+1:T[kk]:=m:
fi:
od:
s1:=0:s2:=0:
for j from 1 to kk do:
if irem(T[j], 2)=1
then
s1:=s1+T[j]:
else
s2:=s2+T[j]:
fi:
od:
g:=gcd(s1, s2):
if g=n
then
ii:=1:printf("%d %d \n", n, k):
else fi:
od:
od:
MATHEMATICA
Table[k = 1; While[n != GCD[Total@ Select[#, OddQ], Total@ Select[#, EvenQ]] &@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, k, # > 1 &], k++]; k, {n, 52}] (* Michael De Vlieger, Jul 13 2016 *)
CROSSREFS
Sequence in context: A003568 A305196 A099642 * A237114 A217412 A241285
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 13 2016
STATUS
approved