login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309661
Sum of the odd parts in the partitions of n into 10 parts.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 9, 20, 27, 52, 67, 116, 151, 244, 320, 480, 631, 924, 1199, 1676, 2172, 2966, 3791, 5054, 6405, 8374, 10501, 13472, 16762, 21244, 26183, 32714, 40034, 49500, 60081, 73554, 88664, 107582, 128818, 155000, 184456, 220400
OFFSET
0,11
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} r * (r mod 2) + q * (q mod 2) + p * (p mod 2) + o * (o mod 2) + m * (m mod 2) + l * (l mod 2) + k * (k mod 2) + j * (j mod 2) + i * (i mod 2) + (n-i-j-k-l-m-o-p-q-r) * ((n-i-j-k-l-m-o-p-q-r) mod 2).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[i * Mod[i, 2] + j * Mod[j, 2] + k * Mod[k, 2] + l * Mod[l, 2] + m * Mod[m, 2] + o * Mod[o, 2] + p * Mod[p, 2] + q * Mod[q, 2] + r * Mod[r, 2] + (n - i - j - k - l - m - o - p - q - r) * Mod[n - i - j - k - l - m - o - p - q - r, 2], {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
CROSSREFS
Sequence in context: A309660 A341821 A184959 * A003568 A305196 A099642
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 11 2019
STATUS
approved