login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A309660
Number of odd parts in the partitions of n into 10 parts.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 9, 18, 25, 42, 55, 86, 111, 162, 210, 290, 371, 504, 635, 834, 1048, 1350, 1673, 2122, 2605, 3254, 3961, 4876, 5890, 7184, 8607, 10384, 12364, 14792, 17489, 20766, 24404, 28770, 33624, 39376, 45776, 53308, 61656, 71396
OFFSET
0,11
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (r mod 2) + (q mod 2) + (p mod 2) + (o mod 2) + (m mod 2) + (l mod 2) + (k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k-l-m-o-p-q-r) mod 2).
MATHEMATICA
Table[Count[Flatten[IntegerPartitions[n, {10}]], _?OddQ], {n, 0, 50}] (* Harvey P. Dale, Jul 24 2021 *)
CROSSREFS
Sequence in context: A360382 A284518 A369603 * A341821 A184959 A309661
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 11 2019
STATUS
approved