login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305201
Expansion of e.g.f. Product_{k>=1} 1/(1 - H(k)*x^k), where H(k) is the k-th harmonic number.
2
1, 1, 5, 26, 208, 1644, 18728, 201466, 2809672, 39505800, 647509992, 10851033984, 210456343392, 4090234000800, 89123794754304, 2000019423403824, 48674645933985408, 1217362548455301504, 32913123947574009984, 910006995701419453440, 26898048642355515339264
OFFSET
0,3
FORMULA
E.g.f.: Product_{k>=1} 1/(1 - (A001008(k)/A002805(k))*x^k).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} H(j)^k*x^(j*k)/k).
a(n) ~ n! * c * (3/2)^(n/2 + 1) / (3 - sqrt(6)), where c = Product_{k>=3} 1/(1 - (2/3)^(k/2) * H(k)) = 20723937.5142714953478411012151498609843924051679047516... - Vaclav Kotesovec, Nov 05 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - HarmonicNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Sum[Sum[HarmonicNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d HarmonicNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 27 2018
STATUS
approved