login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. Product_{k>=1} 1/(1 - H(k)*x^k), where H(k) is the k-th harmonic number.
2

%I #13 Dec 04 2024 16:10:04

%S 1,1,5,26,208,1644,18728,201466,2809672,39505800,647509992,

%T 10851033984,210456343392,4090234000800,89123794754304,

%U 2000019423403824,48674645933985408,1217362548455301504,32913123947574009984,910006995701419453440,26898048642355515339264

%N Expansion of e.g.f. Product_{k>=1} 1/(1 - H(k)*x^k), where H(k) is the k-th harmonic number.

%H Vaclav Kotesovec, <a href="/A305201/b305201.txt">Table of n, a(n) for n = 0..430</a>

%H Vaclav Kotesovec, <a href="/A305201/a305201.jpg">Graph - the asymptotic ratio (5000 terms)</a>

%F E.g.f.: Product_{k>=1} 1/(1 - (A001008(k)/A002805(k))*x^k).

%F E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} H(j)^k*x^(j*k)/k).

%F a(n) ~ n! * c * (3/2)^(n/2 + 1) / (3 - sqrt(6)), where c = Product_{k>=3} 1/(1 - (2/3)^(k/2) * H(k)) = 20723937.5142714953478411012151498609843924051679047516... - _Vaclav Kotesovec_, Nov 05 2019

%t nmax = 20; CoefficientList[Series[Product[1/(1 - HarmonicNumber[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 20; CoefficientList[Series[Exp[Sum[Sum[HarmonicNumber[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d HarmonicNumber[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]

%Y Cf. A001008, A002805, A007841, A303970, A305203.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 27 2018