login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305187 Decimal expansion of the solution to x^x^x = 3. 0
1, 6, 3, 5, 0, 7, 8, 4, 7, 4, 6, 3, 6, 3, 7, 5, 2, 4, 5, 8, 9, 9, 7, 5, 7, 1, 9, 8, 7, 8, 7, 5, 0, 0, 8, 8, 8, 1, 2, 3, 9, 8, 2, 1, 9, 2, 7, 6, 8, 1, 4, 6, 1, 9, 3, 5, 1, 7, 4, 4, 4, 5, 6, 2, 8, 9, 6, 7, 6, 2, 4, 6, 2, 3, 1, 6, 3, 0, 3, 6, 7, 6, 2, 0, 9, 1, 9, 5, 5, 7, 2, 0, 7, 9, 0, 4, 6, 9, 7, 3, 4, 1, 0, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,
decimal
m equation solution x(m) expansion
==== ==================== ============= =============
1 x = 1 1.00000000... A000007
2 x^x = 2 1.55961046... A030798
3 x^x^x = 3 1.63507847... this sequence
4 x^x^x^x = 4 1.62036995...
5 x^x^x^x^x = 5 1.59340881...
6 x^x^x^x^x^x = 6 1.56864406...
7 x^x^x^x^x^x^x = 7 1.54828598...
.
10 x^x^x^x^...^x = 10 1.50849792...
.
100 x^x^x^x^...^x = 100 1.44567285...
.
1000 x^x^x^x^...^x = 1000 1.44467831...
.
Then x(1) < x(m) < x(3) for all m >= 4.
Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,
decimal
k equation solution y(k/2) expansion
= ========================= =============== =========
1 y = (1/2)*y^y 2 A000038
2 y^y = (2/2)*y^y indeterminate
3 y^y^y = (3/2)*y^y 1.6998419085...
4 y^y^y^y = (4/2)*y^y 1.6396207046...
5 y^y^y^y^y = (5/2)*y^y 1.5987769216...
6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408...
7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822...
.
What is lim_{k -> infinity} y(k/2)?
Lim_{m -> infinity} x(m) = e^(1/e). - Jon E. Schoenfield, Jul 23 2018
Lim_{k -> infinity} y(k/2) = e^(1/e). - Jon E. Schoenfield, Aug 01 2018
LINKS
EXAMPLE
1.635078474636375245899757198787500888...
MATHEMATICA
RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
PROG
(PARI) default(realprecision, 333);
solve(x=1.6, 1.7, x^x^x-3) \\ Joerg Arndt, May 27 2018
CROSSREFS
Sequence in context: A019165 A195490 A195471 * A065418 A228725 A286982
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Michel Marcus, Joerg Arndt, May 27 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 01:35 EDT 2024. Contains 375995 sequences. (Running on oeis4.)