|
|
A305187
|
|
Decimal expansion of the solution to x^x^x = 3.
|
|
0
|
|
|
1, 6, 3, 5, 0, 7, 8, 4, 7, 4, 6, 3, 6, 3, 7, 5, 2, 4, 5, 8, 9, 9, 7, 5, 7, 1, 9, 8, 7, 8, 7, 5, 0, 0, 8, 8, 8, 1, 2, 3, 9, 8, 2, 1, 9, 2, 7, 6, 8, 1, 4, 6, 1, 9, 3, 5, 1, 7, 4, 4, 4, 5, 6, 2, 8, 9, 6, 7, 6, 2, 4, 6, 2, 3, 1, 6, 3, 0, 3, 6, 7, 6, 2, 0, 9, 1, 9, 5, 5, 7, 2, 0, 7, 9, 0, 4, 6, 9, 7, 3, 4, 1, 0, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,
decimal
m equation solution x(m) expansion
==== ==================== ============= =============
3 x^x^x = 3 1.63507847... this sequence
4 x^x^x^x = 4 1.62036995...
5 x^x^x^x^x = 5 1.59340881...
6 x^x^x^x^x^x = 6 1.56864406...
7 x^x^x^x^x^x^x = 7 1.54828598...
.
10 x^x^x^x^...^x = 10 1.50849792...
.
100 x^x^x^x^...^x = 100 1.44567285...
.
1000 x^x^x^x^...^x = 1000 1.44467831...
.
Then x(1) < x(m) < x(3) for all m >= 4.
Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,
decimal
k equation solution y(k/2) expansion
= ========================= =============== =========
2 y^y = (2/2)*y^y indeterminate
3 y^y^y = (3/2)*y^y 1.6998419085...
4 y^y^y^y = (4/2)*y^y 1.6396207046...
5 y^y^y^y^y = (5/2)*y^y 1.5987769216...
6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408...
7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822...
.
What is lim_{k -> infinity} y(k/2)?
|
|
LINKS
|
|
|
EXAMPLE
|
1.635078474636375245899757198787500888...
|
|
MATHEMATICA
|
RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* Robert G. Wilson v, Jun 13 2018 *)
|
|
PROG
|
(PARI) default(realprecision, 333);
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|