The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195471 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)). 5
 6, 3, 5, 0, 7, 4, 3, 6, 8, 6, 2, 0, 6, 6, 8, 1, 3, 7, 5, 6, 2, 1, 5, 7, 6, 6, 1, 6, 4, 5, 4, 6, 4, 6, 0, 8, 6, 9, 7, 6, 8, 0, 5, 0, 0, 0, 7, 5, 5, 5, 1, 9, 3, 1, 3, 2, 1, 8, 6, 7, 4, 2, 2, 9, 2, 7, 5, 7, 4, 9, 4, 0, 4, 3, 3, 5, 5, 5, 9, 7, 7, 8, 3, 2, 0, 1, 1, 3, 4, 1, 5, 5, 5, 7, 0, 6, 3, 9, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A195304 for definitions and a general discussion. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE (A)=0.6350743686206681375621576616454646086976805000... MATHEMATICA a = 1; b = Sqrt[2]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195471 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195472 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195473 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC, G) A195474 *) CROSSREFS Cf. A195304, A195471, A195472, A195473. Sequence in context: A019150 A019165 A195490 * A305187 A065418 A228725 Adjacent sequences: A195468 A195469 A195470 * A195472 A195473 A195474 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 00:04 EDT 2024. Contains 375749 sequences. (Running on oeis4.)