login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305185
a(n) minimizes the maximum norm of elements in a complete residue system of Eisenstein integers modulo n.
1
0, 1, 3, 4, 7, 12, 13, 19, 27, 28, 37, 48, 49, 61, 75, 76, 91, 108, 109, 127, 147, 148, 169, 192, 193, 217, 243, 244, 271, 300, 301, 331, 363, 364, 397, 432, 433, 469, 507, 508, 547, 588, 589, 631, 675, 676, 721, 768, 769, 817, 867, 868, 919, 972, 973, 1027, 1083, 1084, 1141, 1200
OFFSET
1,3
COMMENTS
From Jianing Song, May 05 2019:
For any Eisenstein integer w != 0, let R(w) be any set of N(w) Eisenstein integers such that no two numbers are congruent modulo w, then we intend to find the smallest possible value of max_{s in R(w)} N(s). Here N(w) is the norm of w.
If we can find a set of complex numbers A such that: (i) for any Eisenstein integer x, r in A, |r| <= |r - x|; (ii) every complex number z can be uniquely represented as z = x + r, where x is an Eisenstein integer, r is in A, then S(w) = {r*w : r is in A} is a complete residue system modulo w formed by choosing one element with the minimal norm in each residue class modulo w (there may be more than one element whose norms are minimal in one residue class). As a result, the smallest possible value of max_{s in R(w)} N(s) is max_{s in S(w)} N(s). For more details, see my further notes in the Link section.
Now, for positive integers n, we find the value of max_{s in S(n)} N(s) over the ring of Eisenstein integers. Let A be the set shown in Page 5, Figure 2 in my further notes on this sequence (see Links section below), and S(w) = {r*w : r in A}. For n >= 2, note that for any s in S(n), s != 0, there exists some s' in S(n) such that s/s' is an Eisenstein unit and arg(s') is in the range [-Pi/6, Pi/6]. Let s' = (x + y*sqrt(3)*i)/2 where x and y have the same parity, 0 < x <= n and -x/3 <= y <= x/3, then N(s) = N(s') = (x^2 + 3*y^2)/4. For fixed x >= 2, we have max |y| = x - 2*ceiling(x/3) so max N(s') = max_{x=2..n} (x^2 + 3*(x - 2*ceiling(x/3))^2)/4 = (n^2 + 3*(n - 2*ceiling(n/3))^2)/4. (End)
FORMULA
From Jianing Song, May 05 2019: (Start)
a(1) = 0; for n >= 2, a(n) = (n^2 + 3*(n - 2*ceiling(n/3))^2)/4 = n^2 - 3*n*ceiling(n/3) + 3*ceiling(n/3)^2.
For k >= 1, a(3*k-1) = 3*k^2 - 3*k + 1, a(3*k) = 3*k^2, a(3*k+1) = 3*k^2 + 1.
G.f.: (x^2*(1 + x^2)*(1 + 2*x - x^3 + x^4))/((1 - x)^3*(1 + x + x^2)^2) (End)
EXAMPLE
In the following examples let w = (-1 + sqrt(-3))/2. Let A be the set shown in Page 5, Figure 2 in my further notes on this sequence, and S(w) = {r*w : r is in A}.
n = 1: S(1) = {0}, so a(1) = max_{s in S(1)} N(s) = 0.
n = 2: S(2) = {0, 1, w, w+1}, so a(2) = max_{s in S(2)} N(s) = 1.
n = 3: S(3) = {0, 1, -1, w, w+1, -w, -w-1, w+2, -w-2}, so a(3) = max_{s in S(3)} N(s) = 3.
PROG
(PARI) a(n) = if(n>1, n^2 - 3*n*ceil(n/3) + 3*ceil(n/3)^2, 0) \\ Jianing Song, May 12 2019
CROSSREFS
Sequence in context: A300332 A244819 A377600 * A083561 A018195 A086417
KEYWORD
nonn,easy
AUTHOR
Jianing Song, May 27 2018
EXTENSIONS
Entry rewritten by Jianing Song, May 05 2019
STATUS
approved