login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the solution to x^x^x = 3.
0

%I #72 Aug 04 2018 06:42:25

%S 1,6,3,5,0,7,8,4,7,4,6,3,6,3,7,5,2,4,5,8,9,9,7,5,7,1,9,8,7,8,7,5,0,0,

%T 8,8,8,1,2,3,9,8,2,1,9,2,7,6,8,1,4,6,1,9,3,5,1,7,4,4,4,5,6,2,8,9,6,7,

%U 6,2,4,6,2,3,1,6,3,0,3,6,7,6,2,0,9,1,9,5,5,7,2,0,7,9,0,4,6,9,7,3,4,1,0,7

%N Decimal expansion of the solution to x^x^x = 3.

%C Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,

%C decimal

%C m equation solution x(m) expansion

%C ==== ==================== ============= =============

%C 1 x = 1 1.00000000... A000007

%C 2 x^x = 2 1.55961046... A030798

%C 3 x^x^x = 3 1.63507847... this sequence

%C 4 x^x^x^x = 4 1.62036995...

%C 5 x^x^x^x^x = 5 1.59340881...

%C 6 x^x^x^x^x^x = 6 1.56864406...

%C 7 x^x^x^x^x^x^x = 7 1.54828598...

%C .

%C 10 x^x^x^x^...^x = 10 1.50849792...

%C .

%C 100 x^x^x^x^...^x = 100 1.44567285...

%C .

%C 1000 x^x^x^x^...^x = 1000 1.44467831...

%C .

%C Then x(1) < x(m) < x(3) for all m >= 4.

%C Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,

%C decimal

%C k equation solution y(k/2) expansion

%C = ========================= =============== =========

%C 1 y = (1/2)*y^y 2 A000038

%C 2 y^y = (2/2)*y^y indeterminate

%C 3 y^y^y = (3/2)*y^y 1.6998419085...

%C 4 y^y^y^y = (4/2)*y^y 1.6396207046...

%C 5 y^y^y^y^y = (5/2)*y^y 1.5987769216...

%C 6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408...

%C 7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822...

%C .

%C What is lim_{k -> infinity} y(k/2)?

%C Lim_{m -> infinity} x(m) = e^(1/e). - _Jon E. Schoenfield_, Jul 23 2018

%C Lim_{k -> infinity} y(k/2) = e^(1/e). - _Jon E. Schoenfield_, Aug 01 2018

%e 1.635078474636375245899757198787500888...

%t RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* _Robert G. Wilson v_, Jun 13 2018 *)

%o (PARI) default(realprecision,333);

%o solve(x=1.6, 1.7, x^x^x-3) \\ _Joerg Arndt_, May 27 2018

%Y Cf. A000007, A000038, A030798.

%K nonn,cons

%O 1,2

%A _Juri-Stepan Gerasimov_, May 27 2018

%E More digits from _Michel Marcus_, _Joerg Arndt_, May 27 2018