|
EXAMPLE
|
G.f.: A(x) = 1 + 8*x + 199*x^2 + 19568*x^3 + 4309702*x^4 + 1628514128*x^5 + 927231430126*x^6 + 737350581437744*x^7 + 778840734924755140*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)^3)/A(x) begins:
n=0: [1, -7, -143, -17031, -4008021, -1560094653, -901603927833, ...;
n=1: [1, 0, -171, -18144, -4130451, -1588513680, -912609360075, ...;
n=2: [1, 19, 0, -20424, -4500552, -1670248944, -943515644316, ...;
n=3: [1, 56, 1369, 0, -5042565, -1848681000, -1008460310529, ...;
n=4: [1, 117, 6615, 221979, 0, -2071834128, -1129354648380, ...;
n=5: [1, 208, 21357, 1424544, 64174929, 0, -1267137137679, ...;
n=6: [1, 335, 55774, 6134466, 495645999, 29071716177, 0, ...; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)^3)/A(x) = 0 for n>0.
RELATED SERIES.
1 - 1/A(x) = 8*x + 135*x^2 + 16896*x^3 + 3991125*x^4 + 1556103528*x^5 + 900047824305*x^6 + 722051918333952*x^7 + 766786063398540525*x^8 + ...
The logarithmic derivative of the g.f. A(x) begins
A'(x)/A(x) = 8 + 334*x + 54440*x^2 + 16580278*x^3 + 7958081528*x^4 + 5480891617798*x^5 + 5107502440681208*x^6 + 6182250826385760238*x^7 + ...
|