login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304399
G.f. A(x) satisfies: [x^n] (1+x)^((n+1)^4) / A(x) = 0 for n>0.
2
1, 16, 2200, 1809920, 4241345876, 20919209023760, 185887334702902784, 2699985099706935115520, 59877289873410663776378876, 1926339929784486079047963326480, 86370374435881318779333300624751016, 5225229347181019896500110654738959018752, 415299644168495653846091996394573044842672676
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 16*x + 2200*x^2 + 1809920*x^3 + 4241345876*x^4 + 20919209023760*x^5 + 185887334702902784*x^6 + 2699985099706935115520*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)^4)/A(x) begins:
n=0: [1, -15, -1960, -1745560, -4181956116, -20781289862564, ...;
n=1: [1, 0, -2080, -1776080, -4208350776, -20844203397376, ...;
n=2: [1, 65, 0, -1867600, -4327445336, -21121523038728, ...;
n=3: [1, 240, 26600, 0, -4559454036, -21903515092368, ...;
n=4: [1, 609, 183056, 34416384, 0, -23127137438064, ...;
n=5: [1, 1280, 816480, 344268080, 103140231304, 0, ...;
n=6: [1, 2385, 2840840, 2251489240, 1330416079284, 599753730572516, 0, ...; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)^4)/A(x) = 0 for n>0.
RELATED SERIES.
1 - 1/A(x) = 16*x + 1944*x^2 + 1743616*x^3 + 4180212500*x^4 + 20777109650064*x^5 + 185199596154767936*x^6 + 2693946371100901126144*x^7 + ...
The logarithmic derivative of the g.f. A(x) begins
A'(x)/A(x) = 16 + 4144*x + 5328256*x^2 + 16842055888*x^3 + 104239488218896*x^4 + 1113257196684170944*x^5 + 18878740287619671915136*x^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m^4)/Ser(A) )[m] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A208148 A265593 A345275 * A186857 A196884 A165126
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 14 2018
STATUS
approved