|
|
A229265
|
|
Numbers n such that sigma(n) + tau(n) + phi(n) is a prime, where sigma(n) = A000203(n), tau(n) = A000005(n) and phi(n) = A000010(n).
|
|
3
|
|
|
1, 8, 200, 512, 968, 1458, 3200, 4232, 5618, 5832, 6962, 10368, 16928, 26912, 36992, 40328, 53792, 61952, 84050, 101250, 110450, 140450, 147968, 220448, 247808, 249218, 253472, 257762, 279752, 282752, 320000, 336200, 344450, 359552, 361250, 445568, 472392, 512072
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
sigma(200) = 465, tau(200) = 12, phi(200) = 80 and 465 + 12 + 80 = 557 is prime.
|
|
MAPLE
|
with(numtheory); P:=proc(q) local n; for n from 1 to q do
if isprime(sigma(n)+tau(n)+phi(n)) then print(n); fi; od; end: P(10^6);
|
|
CROSSREFS
|
Cf. A000005, A000010, A000203, A009087, A023194, A038344, A055813, A062700, A064205, A115919, A141242, A229264, A229266-A229268.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|