|
|
A034861
|
|
a(n) = n!*(3*n^2 - 15*n + 10)/6.
|
|
2
|
|
|
-8, 200, 3360, 43680, 551040, 7136640, 96768000, 1383782400, 20916403200, 334183449600, 5637529497600, 100255034880000, 1876076826624000, 36872930045952000, 759748346413056000, 16381540188389376000, 368990137906790400000, 8668429855133368320000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,1
|
|
LINKS
|
|
|
FORMULA
|
(3*n^2-21*n+28)*a(n) - n*(3*n^2-15*n+10)*a(n-1) = 0. - R. J. Mathar, Apr 03 2017
E.g.f.: x^4*(1 -8*x +4*x^2)/(3*(-1+x)^3). - G. C. Greubel, Feb 22 2018
|
|
MATHEMATICA
|
Table[n!*(3*n^2 -15*n +10)/6, {n, 4, 30}] (* G. C. Greubel, Feb 22 2018 *)
|
|
PROG
|
(PARI) for(n=4, 30, print1(n!*(3*n^2 -15*n +10)/6, ", ")) \\ G. C. Greubel, Feb 22 2018
(Magma) [Factorial(n)*(3*n^2 -15*n +10)/6: n in [4..30]]; // G. C. Greubel, Feb 22 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|