login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034861
a(n) = n!*(3*n^2 - 15*n + 10)/6.
2
-8, 200, 3360, 43680, 551040, 7136640, 96768000, 1383782400, 20916403200, 334183449600, 5637529497600, 100255034880000, 1876076826624000, 36872930045952000, 759748346413056000, 16381540188389376000, 368990137906790400000, 8668429855133368320000
OFFSET
4,1
LINKS
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478
FORMULA
(3*n^2-21*n+28)*a(n) - n*(3*n^2-15*n+10)*a(n-1) = 0. - R. J. Mathar, Apr 03 2017
E.g.f.: x^4*(1 -8*x +4*x^2)/(3*(-1+x)^3). - G. C. Greubel, Feb 22 2018
MATHEMATICA
Table[n!*(3*n^2 -15*n +10)/6, {n, 4, 30}] (* G. C. Greubel, Feb 22 2018 *)
PROG
(PARI) for(n=4, 30, print1(n!*(3*n^2 -15*n +10)/6, ", ")) \\ G. C. Greubel, Feb 22 2018
(Magma) [Factorial(n)*(3*n^2 -15*n +10)/6: n in [4..30]]; // G. C. Greubel, Feb 22 2018
CROSSREFS
Sequence in context: A232518 A229265 A323562 * A221121 A264124 A317631
KEYWORD
sign
EXTENSIONS
More terms from G. C. Greubel, Feb 22 2018
STATUS
approved