OFFSET
4,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 4..445
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
FORMULA
Conjecture: (-96*n + 27161)*a(n) + (96*n^2 - 99580*n + 199917)*a(n-1) +(72707*n - 61983)*(n-1)*a(n-2) = 0. - R. J. Mathar, Apr 03 2017
E.g.f.: x^4*(-61 + 197*x - 151*x^2 + 39*x^3)/(24*(1-x)^4). - G. C. Greubel, Feb 16 2018
MAPLE
[seq(factorial(n)*(4*n^3-30*n^2+40*n+3)/24, n=4..22)]; # Muniru A Asiru, Feb 17 2018
MATHEMATICA
Table[n!(4n^3-30n^2+40n+3)/24, {n, 4, 20}] (* Harvey P. Dale, Apr 14 2015 *)
PROG
(PARI) for(n=4, 30, print1(n!*(4*n^3-30*n^2+40*n+3)/24, ", ")) \\ G. C. Greubel, Feb 16 2018
(Magma) [Factorial(n)*(4*n^3-30*n^2+40*n+3)/24: n in [4..30]]; // G. C. Greubel, Feb 16 2018
(GAP) A034863:=List([4..22], n->Factorial(n)*(4*n^3-30*n^2+40*n+3)/24); # Muniru A Asiru, Feb 17 2018
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Apr 14 2015
STATUS
approved