The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034859 a(n) = C(n+3,4) + 3*C(n+1,3) + 5*C(n-1,2) + 7*n - 15 for n >= 3; a(1)=1, a(2)=10. 1
 1, 10, 38, 93, 180, 308, 487, 728, 1043, 1445, 1948, 2567, 3318, 4218, 5285, 6538, 7997, 9683, 11618, 13825, 16328, 19152, 22323, 25868, 29815, 34193, 39032, 44363, 50218, 56630, 63633, 71262, 79553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478. Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA G.f.: (1+5*z-2*z^2-7*z^3+7*z^5-3*z^6)*z/(1-z)^5. - Robert Israel, Jun 14 2017 MAPLE 1, 10, seq(binomial(n+3, 4)+3*binomial(n+1, 3)+5*binomial(n-1, 2)+7*n-15, n=3..40); # Robert Israel, Jun 14 2017 MATHEMATICA Join[{1, 10}, Table[Binomial[n+3, 4]+3Binomial[n+1, 3]+5Binomial[n-1, 2]+7n-15, {n, 3, 40}]] (* Harvey P. Dale, Jan 09 2014 *) PROG (PARI) x='x+O('x^30); Vec(x*(1+5*x-2*x^2-7*x^3+7*x^5-3*x^6)/(1-x)^5) \\ G. C. Greubel, Feb 22 2018 (MAGMA) [1, 10] cat [Binomial(n+3, 4) + 3*Binomial(n+1, 3) + 5*Binomial(n-1, 2) + 7*n -15: n in [3..30]]; // G. C. Greubel, Feb 22 2018 CROSSREFS Sequence in context: A065009 A031430 A154517 * A197060 A257051 A250420 Adjacent sequences:  A034856 A034857 A034858 * A034860 A034861 A034862 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:22 EDT 2020. Contains 337962 sequences. (Running on oeis4.)