The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020329 Consider integers z such that C(z,4) = C(x,4) + C(y,4), x >= y >= 4, is solvable. Sequence gives values of z. 1
 8, 200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(3) > 126900. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), May 02 2000 a(3) > 1350000. - Sean A. Irvine, Apr 20 2019 REFERENCES A. S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971. LINKS Table of n, a(n) for n=1..2. H. Finner and K. Strassburger, Increasing sample sizes do not necessarily increase the power of UMPU-tests for 2 X 2-tables, Metrika, 54, 77-91, (2001). Heiko Harborth, Fermat-like binomial equations, Applications of Fibonacci numbers, Proc. 2nd Int. Conf., San Jose/Ca., August 1986, 1-5 (1988). J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780. M. Wunderlich, Certain properties of pyramidal and figurate numbers, Math. Comp., 16 (1962), 482-486. MATHEMATICA nn = 1000; t = Binomial[Range[nn], 4]; d = Intersection[t, Union[Flatten[Table[t[[i]] + t[[j]], {i, 4, nn}, {j, i, nn}]]]]; Flatten[Table[Position[t, i], {i, d}]] (* T. D. Noe, Apr 02 2014 *) CROSSREFS Cf. A010332. Sequence in context: A024287 A208703 A304398 * A232518 A229265 A323562 Adjacent sequences: A020326 A020327 A020328 * A020330 A020331 A020332 KEYWORD nonn,bref AUTHOR David W. Wilson EXTENSIONS Additional references from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 21:59 EDT 2024. Contains 375839 sequences. (Running on oeis4.)