login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304255 Triangle read by rows: T(0,0) = 1; T(n,k) = 6*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0. 1
1, 6, 36, 1, 216, 12, 1296, 108, 1, 7776, 864, 18, 46656, 6480, 216, 1, 279936, 46656, 2160, 24, 1679616, 326592, 19440, 360, 1, 10077696, 2239488, 163296, 4320, 30, 60466176, 15116544, 1306368, 45360, 540, 1, 362797056, 100776960, 10077696, 435456, 7560, 36 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013613 ((1+6*x)^n).

The coefficients in the expansion of 1/(1-6x-x^2) are given by the sequence generated by the row sums.

The row sums are Denominators of continued fraction convergent to sqrt(10), see A005668.

If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 6.162277660..., a metallic mean (see A176398), when n approaches infinity.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 94.

LINKS

Table of n, a(n) for n=0..41.

Zagros Lalo, Left-justified triangle

Zagros Lalo, Skew diagonals in center-justified triangle of coefficients in expansion of (1+6x)^n

EXAMPLE

Triangle begins:

1;

6;

36, 1;

216, 12;

1296, 108, 1;

7776, 864, 18;

46656, 6480, 216, 1;

279936, 46656, 2160, 24;

1679616, 326592, 19440, 360, 1;

10077696, 2239488, 163296, 4320, 30;

60466176, 15116544, 1306368, 45360, 540, 1;

362797056, 100776960, 10077696, 435456, 7560, 36;

2176782336, 665127936, 75582720, 3919104, 90720, 756, 1;

13060694016, 4353564672, 554273280, 33592320, 979776, 12096, 42;

78364164096, 28298170368, 3990767616, 277136640, 9797760, 163296, 1008, 1;

470184984576, 182849716224, 28298170368, 2217093120, 92378880, 1959552, 18144, 48;

MATHEMATICA

t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 6 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten

PROG

(PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 6*T(n-1, k) + T(n-2, k-1)));

tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 26 2018

CROSSREFS

Row sums give A005668.

Cf. A000400 (column 0), A053469 (column 1), A081136 (column 2), A081144 (column 3).

Cf. A013613.

Cf. A176398.

Sequence in context: A193001 A128298 A059059 * A050112 A250202 A036125

Adjacent sequences:  A304252 A304253 A304254 * A304256 A304257 A304258

KEYWORD

tabf,nonn,easy

AUTHOR

Zagros Lalo, May 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)