The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303697 Number T(n,k) of permutations p of [n] whose difference between sum of up-jumps and sum of down-jumps equals k; triangle T(n,k), n>=0, min(0,1-n)<=k<=max(0,n-1), read by rows. 6
 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 4, 5, 4, 5, 4, 1, 1, 11, 19, 19, 20, 19, 19, 11, 1, 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1, 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1, 1, 120, 1255, 3394, 4339, 4420, 4421, 4420, 4421, 4420, 4339, 3394, 1255, 120, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. LINKS Alois P. Heinz, Rows n = 0..125, flattened FORMULA T(n,0) = A153229(n) for n > 0. T(n,1) = A005165(n-1) for n > 0. T(n+1,n-1) = A000295(n). T(n,k) = T(n,-k). Sum_{k=0..n-1} k^2 * T(n,k) = A001720(n+2) for n>1. EXAMPLE Triangle T(n,k) begins: :                               1                             ; :                               1                             ; :                          1,   0,   1                        ; :                     1,   1,   2,   1,   1                   ; :                1,   4,   5,   4,   5,   4,   1              ; :           1,  11,  19,  19,  20,  19,  19,  11,   1         ; :      1,  26,  82, 100, 101, 100, 101, 100,  82,  26,  1     ; :  1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1  ; MAPLE b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,       add(b(u-j, o+j-1)*x^(-j), j=1..u)+       add(b(u+j-1, o-j)*x^( j), j=1..o)))     end: T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(         `if`(n=0, 1, add(b(j-1, n-j), j=1..n))): seq(T(n), n=0..12); MATHEMATICA b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1,      Sum[b[u-j, o+j-1] x^-j, {j, 1, u}] +      Sum[b[u+j-1, o-j] x^j, {j, 1, o}]]]; T[0] = {1}; T[n_] := x^n Sum[b[j-1, n-j], {j, 1, n}] // CoefficientList[#, x]& // Rest; T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *) *) CROSSREFS Row sums give A000142. Cf. A000295, A001720, A005165, A008292, A081285, A153229, A291680, A291684, A291722, A316292, A316293, A321316. Sequence in context: A284414 A140274 A095231 * A342413 A202019 A295685 Adjacent sequences:  A303694 A303695 A303696 * A303698 A303699 A303700 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Apr 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 06:14 EST 2021. Contains 349563 sequences. (Running on oeis4.)