login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362827
Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] that pairwise commute.
5
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 1, 8, 18, 24, 1, 1, 1, 16, 48, 120, 120, 1, 1, 1, 32, 126, 504, 840, 720, 1, 1, 1, 64, 336, 2016, 4680, 7920, 5040, 1, 1, 1, 128, 918, 7944, 24720, 66240, 75600, 40320, 1, 1, 1, 256, 2568, 31200, 130440, 516240, 856800, 887040, 362880, 1
OFFSET
0,9
COMMENTS
Two permutations x,y on [n] commute if x*y = y*x.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Tad White, Counting Free Abelian Actions, arXiv preprint arXiv:1304.2830 [math.CO], 2013.
FORMULA
T(n,k) = n!*A362826(n,k) for k > 0.
EXAMPLE
Array begins:
========================================================
n/k| 0 1 2 3 4 5 6 ...
---+----------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 2 4 8 16 32 64 ...
3 | 1 6 18 48 126 336 918 ...
4 | 1 24 120 504 2016 7944 31200 ...
5 | 1 120 840 4680 24720 130440 699840 ...
6 | 1 720 7920 66240 516240 3968640 30672720 ...
7 | 1 5040 75600 856800 9122400 97030080 1050336000 ...
...
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
M(n, m=n)={my(v=vector(m+1), u=vector(n, n, n==1), f=vector(n, n, n!)); v[1]=vectorv(n+1, i, 1); for(j=1, #v-1, my(t=EulerT(u)); v[j+1]=vectorv(n+1, i, i--; if(i, f[i]*t[i], 1)); u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)}
{ my(A=M(7)); for(n=1, #A, print(A[n, ])) }
CROSSREFS
Columns k=0..3 are A000012, A000142, A053529, A072169.
Main diagonal is A362828.
Sequence in context: A140274 A095231 A303697 * A342413 A202019 A295685
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 08 2023
STATUS
approved