login
A302390
Triameter of the n-cube-connected cycle graph.
0
13, 20, 25, 32, 36, 44, 48, 56, 60, 68, 72, 80, 84, 92, 96, 104, 108, 116, 120, 128, 132, 140, 144, 152, 156, 164, 168, 176, 180, 188, 192, 200, 204, 212, 216, 224, 228, 236, 240, 248, 252, 260, 264, 272, 276, 284, 288, 296, 300, 308, 312, 320, 324, 332, 336
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph
Eric Weisstein's World of Mathematics, Graph Triameter
FORMULA
a(2n) = 12*n - 4, a(2n+1) = 12*n for n > 2. - Andrew Howroyd, Apr 15 2018
G.f.: (x^5-x^4-8*x^2+7*x+13)/(x^3-x^2-x+1). - Georg Fischer, Nov 17 2022
EXAMPLE
From Andrew Howroyd, Apr 16 2018: (Start)
Vertices can be represented by a pair (k,w) where k in 0..n-1 is the current index and w is an n bit word.
In the following, words are shown with index zero as the rightmost bit. Example vertices are given with maximal total distance between them. Similar constructions can be used for all n. These constructions are not unique.
Case n=5: with vertices v1=(0,00000), v2=(0,01100), v3=(0,11011)
d(v1,v2)=2+5=7, d(v1,v3)=4+5=9, d(v2,v3)=4+5=9
total distance is 7 + 9 + 9 = 25 = a(5).
Case n=7: with vertices v1=(0,0000000), v2=(0,0011000), v3=(3,1111111)
d(v1,v2)=2+7=9, d(v1,v3)=7+8=15, d(v2,v3)=5+7=12
total distance is 9 + 15 + 12 = 36 = a(7).
Case n=10: with vertices v1=(0,0000000000), v2=(0,000010000), v3=(5,1111111111)
d(v1,v2)=1+10=11, d(v1,v3)=10+13=23, d(v2,v3)=9+13=22
total distance is 11 + 23 + 22 = 56 = a(10).
(End)
MATHEMATICA
CoefficientList[Series[(x^5-x^4-8*x^2+7*x+13)/(x^3-x^2-x+1), {x, 0, 40}], x] (* Georg Fischer, Nov 17 2022 *)
CROSSREFS
Sequence in context: A185126 A366959 A098956 * A014158 A171143 A058016
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 06 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Apr 15 2018
STATUS
approved