OFFSET
1,2
COMMENTS
The sequence is fractal-like as it embeds an infinite number of copies of itself.
The sequence was built according to these rules (see, in the Example section, the parenthesization technique):
1) no overlapping pairs of parentheses;
2) always start the content inside a pair of parentheses with the smallest integer X > 1 not yet present inside another pair of parentheses;
3) always end the content inside a pair of parentheses with the smallest integer Y > 1 not yet present inside another pair of parentheses such that X and Y have no digit in common;
4) after a(1) = 1 and a(2) = 2, always try to extend the sequence with a duplicate > 2 of the oldest term of the sequence not yet duplicated; if this leads to a contradiction, open a new pair of parentheses.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..998
EXAMPLE
Parentheses are added around each pair of terms that have no digit in common:
(1,2),(12,3),(13,4),(14,5),(15,6),(16,7),(17,8),(18,9),(19,20),(10,22),(21,30),(23,11),1,(31,24),2,12,(25,33),3,13,(32,40),4,14,
Erasing all the parenthesized contents yields
(...),(....),(....),(....),(....),(....),(....),(....),(.....),(.....),(.....),(.....),1,( .....),2,12,( .....),3,13,( .....),4,14,
We see that the remaining terms slowly rebuild the starting sequence.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Eric Angelini and Lars Blomberg, May 03 2018
STATUS
approved