

A302387


a(n) is least number k >= 3 such that (k^(2^n) + (k2)^(2^n))/2 is prime.


0



3, 3, 3, 5, 3, 3, 3, 179, 169, 935, 663, 8723, 1481, 2035, 10199, 18203, 36395
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..16.
Henri Lifchitz & Renaud Lifchitz, (36395^65536+36393^65536)/2, a(16).


EXAMPLE

a(10)=663 corresponds to the prime (663^1024 + 661^1024)/2.


MATHEMATICA

lst = {}; For[n=0, n<=14, n++, k=3; While[! PrimeQ[(k^(2^n) + (k2)^(2^n))/2], k++]; AppendTo[lst, k]]; lst (* Robert Price, Apr 29 2018 *)


PROG

(PARI) for(n=0, 20, forstep(k=3, +oo, 2, if(ispseudoprime((k^(2^n)+(k2)^(2^n))/2), print1(k, ", "); break())))


CROSSREFS

Cf. A253633, A291944, A301738.
Sequence in context: A084742 A242033 A301738 * A049613 A002373 A236569
Adjacent sequences: A302384 A302385 A302386 * A302388 A302389 A302390


KEYWORD

nonn,hard,more


AUTHOR

Jeppe Stig Nielsen, Apr 06 2018


EXTENSIONS

a(15) from Robert Price, May 28 2018
a(16) from Kellen Shenton, Apr 14 2022


STATUS

approved



