login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302387
a(n) is least number k >= 3 such that (k^(2^n) + (k-2)^(2^n))/2 is prime.
0
3, 3, 3, 5, 3, 3, 3, 179, 169, 935, 663, 8723, 1481, 2035, 10199, 18203, 36395
OFFSET
0,1
LINKS
Henri Lifchitz & Renaud Lifchitz, (36395^65536+36393^65536)/2, a(16).
EXAMPLE
a(10)=663 corresponds to the prime (663^1024 + 661^1024)/2.
MATHEMATICA
lst = {}; For[n=0, n<=14, n++, k=3; While[! PrimeQ[(k^(2^n) + (k-2)^(2^n))/2], k++]; AppendTo[lst, k]]; lst (* Robert Price, Apr 29 2018 *)
PROG
(PARI) for(n=0, 20, forstep(k=3, +oo, 2, if(ispseudoprime((k^(2^n)+(k-2)^(2^n))/2), print1(k, ", "); break())))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Apr 06 2018
EXTENSIONS
a(15) from Robert Price, May 28 2018
a(16) from Kellen Shenton, Apr 14 2022
STATUS
approved