

A291944


a(n) is the least A for which there exists B with 0 < B < A so that A^(2^n) + B^(2^n) is prime.


5



2, 2, 2, 2, 2, 9, 11, 27, 14, 13, 47, 22, 53, 72, 216, 260, 124, 1196, 200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

A^(2^n) + B^(2^n) is called an (extended) generalized Fermat prime, and often denoted F_n(A, B); or xGF(n, A, B).
If we require B=1, we get A056993. Therefore a(n) <= A056993(n).


LINKS

Table of n, a(n) for n=0..18.
Jeppe Stig Nielsen, List of [n, A, B] tuples for this sequence.
Chris K. Caldwell, The Prime Database: 72^8192 + 43^8192 (related to a(13)).
Henri Lifchitz & Renaud Lifchitz, 1196^131072+595^131072, a(17).
Henri Lifchitz & Renaud Lifchitz, 200^262144+119^262144, a(18).


EXAMPLE

a(10)=47 corresponds to the prime number 47^1024 + 26^1024, the smallest prime number of the form A^1024 + B^1024 (or more precisely, it minimizes A).
a(14)=216 corresponds to the prime number 216^16384 + 109^16384, a 38248decimal digit PRP, the smallest prime number of the form A^16384 + B^16384.  Serge Batalov, Mar 16 2018


MATHEMATICA

f[n_] := Monitor[ Block[{a = 2, b}, While[a < Infinity, b = 1 +Mod[a, 2]; While[b < a, If[ PrimeQ[a^2^n + b^2^n], Goto[fini]]; b+=2]; a++]; Label[fini]; {a, b}], {a, b}]; Array[f, 14, 0] (* Robert G. Wilson v, Mar 10 2018 *)


PROG

(PARI) for(n=0, 30, for(a=2, 10^100, forstep(b=(a % 2)+1, a1, 2, if(ispseudoprime(a^(2^n)+b^(2^n)), print1(a, ", "); next(3)))))


CROSSREFS

Cf. A056993, A253633, A111635.
Sequence in context: A339164 A323443 A334511 * A253633 A216844 A088050
Adjacent sequences: A291941 A291942 A291943 * A291945 A291946 A291947


KEYWORD

nonn,hard,more


AUTHOR

Jeppe Stig Nielsen, Mar 09 2018


EXTENSIONS

a(14) = 216 (and B = 109) from Serge Batalov, Mar 16 2018
a(15) = 260 (and B = 179) from Serge Batalov, Mar 16 2018
a(16) = 124 (and B = 57) from Serge Batalov, Mar 16 2018
a(17) = 1196 (and B = 595) from Kellen Shenton, Aug 10 2022
a(18) = 200 (and B = 119) from Kellen Shenton, Aug 27 2022


STATUS

approved



