login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302393
Number of even parts in the partitions of 3n into 3 parts.
1
0, 5, 8, 18, 24, 41, 50, 72, 84, 113, 128, 162, 180, 221, 242, 288, 312, 365, 392, 450, 480, 545, 578, 648, 684, 761, 800, 882, 924, 1013, 1058, 1152, 1200, 1301, 1352, 1458, 1512, 1625, 1682, 1800, 1860, 1985, 2048, 2178, 2244, 2381, 2450, 2592, 2664, 2813
OFFSET
1,2
FORMULA
Conjectures from Colin Barker, Apr 07 2018: (Start)
G.f.: x^2*(5 + 3*x + 5*x^2 + 3*x^3 + 2*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Count the even parts for a(n) (n > 0).
13 + 1 + 1
12 + 2 + 1
11 + 3 + 1
10 + 4 + 1
9 + 5 + 1
8 + 6 + 1
7 + 7 + 1
10 + 1 + 1 11 + 2 + 2
9 + 2 + 1 10 + 3 + 2
8 + 3 + 1 9 + 4 + 2
7 + 4 + 1 8 + 5 + 2
6 + 5 + 1 7 + 6 + 2
7 + 1 + 1 8 + 2 + 2 9 + 3 + 3
6 + 2 + 1 7 + 3 + 2 8 + 4 + 3
5 + 3 + 1 6 + 4 + 2 7 + 5 + 3
4 + 4 + 1 5 + 5 + 2 6 + 6 + 3
4 + 1 + 1 5 + 2 + 2 6 + 3 + 3 7 + 4 + 4
3 + 2 + 1 4 + 3 + 2 5 + 4 + 3 6 + 5 + 4
1 + 1 + 1 2 + 2 + 2 3 + 3 + 3 4 + 4 + 4 5 + 5 + 5
3(1) 3(2) 3(3) 3(4) 3(5) .. 3n
---------------------------------------------------------------------
0 5 8 18 24 .. a(n)
MATHEMATICA
Table[Count[Flatten[IntegerPartitions[3 n, {3}]], _?EvenQ], {n, 100}]
CROSSREFS
Cf. A302392 (odd parts).
Sequence in context: A155086 A219049 A245534 * A378971 A342804 A226902
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 07 2018
STATUS
approved