login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of even parts in the partitions of 3n into 3 parts.
1

%I #10 Apr 08 2018 09:21:57

%S 0,5,8,18,24,41,50,72,84,113,128,162,180,221,242,288,312,365,392,450,

%T 480,545,578,648,684,761,800,882,924,1013,1058,1152,1200,1301,1352,

%U 1458,1512,1625,1682,1800,1860,1985,2048,2178,2244,2381,2450,2592,2664,2813

%N Number of even parts in the partitions of 3n into 3 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F Conjectures from _Colin Barker_, Apr 07 2018: (Start)

%F G.f.: x^2*(5 + 3*x + 5*x^2 + 3*x^3 + 2*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)).

%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n>7.

%F (End)

%e Count the even parts for a(n) (n > 0).

%e 13 + 1 + 1

%e 12 + 2 + 1

%e 11 + 3 + 1

%e 10 + 4 + 1

%e 9 + 5 + 1

%e 8 + 6 + 1

%e 7 + 7 + 1

%e 10 + 1 + 1 11 + 2 + 2

%e 9 + 2 + 1 10 + 3 + 2

%e 8 + 3 + 1 9 + 4 + 2

%e 7 + 4 + 1 8 + 5 + 2

%e 6 + 5 + 1 7 + 6 + 2

%e 7 + 1 + 1 8 + 2 + 2 9 + 3 + 3

%e 6 + 2 + 1 7 + 3 + 2 8 + 4 + 3

%e 5 + 3 + 1 6 + 4 + 2 7 + 5 + 3

%e 4 + 4 + 1 5 + 5 + 2 6 + 6 + 3

%e 4 + 1 + 1 5 + 2 + 2 6 + 3 + 3 7 + 4 + 4

%e 3 + 2 + 1 4 + 3 + 2 5 + 4 + 3 6 + 5 + 4

%e 1 + 1 + 1 2 + 2 + 2 3 + 3 + 3 4 + 4 + 4 5 + 5 + 5

%e 3(1) 3(2) 3(3) 3(4) 3(5) .. 3n

%e ---------------------------------------------------------------------

%e 0 5 8 18 24 .. a(n)

%t Table[Count[Flatten[IntegerPartitions[3 n, {3}]], _?EvenQ], {n, 100}]

%Y Cf. A302392 (odd parts).

%K nonn

%O 1,2

%A _Wesley Ivan Hurt_, Apr 07 2018