login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366959
Numbers whose difference between the largest and smallest digits is equal to 2.
10
13, 20, 24, 31, 35, 42, 46, 53, 57, 64, 68, 75, 79, 86, 97, 102, 113, 120, 123, 131, 132, 133, 200, 201, 202, 210, 213, 220, 224, 231, 234, 242, 243, 244, 311, 312, 313, 321, 324, 331, 335, 342, 345, 353, 354, 355, 422, 423, 424, 432, 435, 442, 446, 453, 456, 464, 465, 466
OFFSET
1,1
COMMENTS
The number of n-digit terms of this sequence is (46*3^n - 93*2^n + 48)/6.
LINKS
MAPLE
F:= proc(d) local L, i;
L:= select(t -> max(t) = 2 and min(t) = 0, map(convert, [$3^d..2*3^d-1], base, 3));
L:= map(t -> add(t[-i-1]*10^(i-1), i=1..nops(t)-1), L);
L:= map(t -> seq(t+i*(10^d-1)/9, i=0..7), L);
op(sort(select(t -> t >= 10^(d-1), L)));
end proc:
F(2), F(3), F(4); # Robert Israel, Nov 10 2023
MATHEMATICA
Select[Range[500], Max[d=IntegerDigits[#]]-Min[d]==2 &]
PROG
(Python)
def ok(n): return max(d:=list(map(int, str(n))))-min(d) == 2
print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Oct 30 2023
(Python)
from itertools import chain, count, islice, combinations_with_replacement
from sympy.utilities.iterables import multiset_permutations
def A366959_gen(): # generator of terms
return chain.from_iterable(sorted(int(''.join(str(d) for d in t)) for a in range(8) for c in combinations_with_replacement(range(a, a+3), l) for t in multiset_permutations((a, a+2)+c) if t[0]) for l in count(0))
A366959_list = list(islice(A366959_gen(), 30)) # Chai Wah Wu, Nov 10 2023
(PARI) isok(n) = my(d=digits(n)); vecmax(d) - vecmin(d) == 2; \\ Michel Marcus, Nov 05 2023
CROSSREFS
Cf. A037904.
Cf. A010785 (difference = 0), A366958 (difference = 1), A366960 (difference = 3), A366961 (difference = 4), A366962 (difference = 5), A366963 (difference = 6), A366964 (difference = 7), A366965 (difference = 8), A366966 (difference = 9).
Sequence in context: A095040 A069195 A185126 * A098956 A302390 A014158
KEYWORD
nonn,base,easy
AUTHOR
Stefano Spezia, Oct 30 2023
STATUS
approved