login
A300395
Primes that are the sum of 9 alternate primes.
2
521, 563, 601, 641, 1129, 1259, 1319, 1553, 1951, 2957, 3119, 3187, 3299, 3461, 3779, 3943, 4099, 4211, 4831, 5417, 5471, 5519, 5569, 5623, 5779, 6131, 6199, 6701, 7639, 8011, 8273, 8537, 8719, 9431, 9967, 10103, 10177, 10321, 10453, 11069, 11261, 11311
OFFSET
1,1
COMMENTS
Equivalently, primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4) + prime(k+6) + prime(k+8) + prime(k+10) + prime(k+12) + prime(k+14) + prime(k+16).
LINKS
EXAMPLE
521 = 23 + 31 + 41 + 47 + 59 + 67 + 73 + 83 + 97 is a prime and 23, 31, 41, 47, 59, 67, 73, 83, 97 are alternate primes.
563 = 29 + 37 + 43 + 53 + 61 + 71 + 79 + 89 + 101 is a prime and 29, 37, 43, 53, 61, 71, 79, 89, 101 are alternate primes.
MAPLE
select(isprime, [seq(sum(ithprime(2*i+k), i=0..8), k=1..200)]);
PROG
(GAP) P:=Filtered([1..10000], IsPrime);;
Filtered(List([1..200], k->Sum([0..8], i->P[2*i+k])), IsPrime);
CROSSREFS
Cf. Primes that are the sum of k alternate primes: A068363 (k=3), A068364 (k=5), A300394 (k=7), this sequence (k=9).
Sequence in context: A286977 A225999 A291998 * A139663 A146340 A146362
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Mar 05 2018
STATUS
approved