

A068364


Primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4) + prime(k+6) + prime(k+8).


4



71, 181, 223, 307, 353, 379, 401, 541, 641, 757, 1109, 1277, 1327, 1511, 1607, 1777, 1801, 1861, 1889, 2333, 2393, 2423, 2713, 2791, 2837, 2897, 2927, 2953, 3041, 3067, 3121, 3391, 3617, 3821, 3943, 4013, 4153, 4241, 4327, 4523, 4549, 4621, 5113, 5233
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, primes that are the sum of 5 alternate primes.  Muniru A Asiru, Feb 12 2018


LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..10000


EXAMPLE

71 is prime and equal to 3 + 7 + 13 + 19 + 29, so 71 is a term.


MAPLE

p:=ithprime: select(isprime, [seq(sum(p(2*i1+k), i=1..5), k=0..180)]); # Muniru A Asiru, Feb 12 2018


MATHEMATICA

Select[Total /@ Table[Prime[n + m], {n, 200}, {m, 0, 8, 2}], PrimeQ] (* Harvey P. Dale, May 02 2011 *)


PROG

(GAP) P:=Filtered([1..5000], IsPrime);; Filtered(List([0..200], k> Sum([1..5], i > P[2*i1+k])), IsPrime); # Muniru A Asiru, Feb 12 2018
(Magma) [p: k in [1..200]  IsPrime(p) where p is &+[NthPrime(k+2*i): i in [0..4]]]; // Bruno Berselli, Feb 13 2018


CROSSREFS

Cf. A068363.
Sequence in context: A044784 A142488 A331008 * A142612 A295835 A139991
Adjacent sequences: A068361 A068362 A068363 * A068365 A068366 A068367


KEYWORD

nonn,easy


AUTHOR

Benoit Cloitre, Feb 28 2002


STATUS

approved



