login
A068364
Primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4) + prime(k+6) + prime(k+8).
4
71, 181, 223, 307, 353, 379, 401, 541, 641, 757, 1109, 1277, 1327, 1511, 1607, 1777, 1801, 1861, 1889, 2333, 2393, 2423, 2713, 2791, 2837, 2897, 2927, 2953, 3041, 3067, 3121, 3391, 3617, 3821, 3943, 4013, 4153, 4241, 4327, 4523, 4549, 4621, 5113, 5233
OFFSET
1,1
COMMENTS
Equivalently, primes that are the sum of 5 alternate primes. - Muniru A Asiru, Feb 12 2018
LINKS
EXAMPLE
71 is prime and equal to 3 + 7 + 13 + 19 + 29, so 71 is a term.
MAPLE
p:=ithprime: select(isprime, [seq(sum(p(2*i-1+k), i=1..5), k=0..180)]); # Muniru A Asiru, Feb 12 2018
MATHEMATICA
Select[Total /@ Table[Prime[n + m], {n, 200}, {m, 0, 8, 2}], PrimeQ] (* Harvey P. Dale, May 02 2011 *)
PROG
(GAP) P:=Filtered([1..5000], IsPrime);; Filtered(List([0..200], k-> Sum([1..5], i -> P[2*i-1+k])), IsPrime); # Muniru A Asiru, Feb 12 2018
(Magma) [p: k in [1..200] | IsPrime(p) where p is &+[NthPrime(k+2*i): i in [0..4]]]; // Bruno Berselli, Feb 13 2018
CROSSREFS
Cf. A068363.
Sequence in context: A044784 A142488 A331008 * A142612 A295835 A139991
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 28 2002
STATUS
approved