login
A068363
Primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4).
4
23, 61, 71, 109, 157, 173, 199, 211, 223, 239, 269, 283, 373, 383, 421, 443, 487, 503, 547, 599, 691, 701, 719, 829, 991, 1031, 1153, 1289, 1297, 1319, 1399, 1433, 1453, 1531, 1579, 1619, 1667, 1721, 1823, 1873, 1907, 1979, 2029, 2153, 2251, 2269, 2381
OFFSET
1,1
COMMENTS
Equivalently, primes that are the sum of 3 alternate primes. - Muniru A Asiru, Mar 05 2018
LINKS
EXAMPLE
From Muniru A Asiru, Mar 26 2018: (Start)
23 is a term because prime(2) + prime(4) + prime(6) = 3 + 7 + 13 = 23, a prime.
61 is a term because prime(6) + prime(8) + prime(10) = 13 + 19 + 29 = 61, a prime.
... (End)
MAPLE
select(isprime, [seq(sum(ithprime(2*i-1+k), i=1..3), k=0..150)]); # Muniru A Asiru, Mar 05 2018
MATHEMATICA
Select[#[[1]]+#[[3]]+#[[5]]&/@Partition[Prime[Range[200]], 5, 1], PrimeQ] (* Harvey P. Dale, Mar 16 2017 *)
PROG
(GAP) P:=Filtered([1..10000], IsPrime);;
Filtered(List([0..150], k->Sum([1..3], i->P[2*i-1+k])), IsPrime); # Muniru A Asiru, Mar 05 2018
CROSSREFS
Cf. A068364.
Sequence in context: A321133 A055821 A080822 * A351377 A165286 A031342
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Feb 28 2002
STATUS
approved