%I #23 Sep 15 2018 18:37:43
%S 521,563,601,641,1129,1259,1319,1553,1951,2957,3119,3187,3299,3461,
%T 3779,3943,4099,4211,4831,5417,5471,5519,5569,5623,5779,6131,6199,
%U 6701,7639,8011,8273,8537,8719,9431,9967,10103,10177,10321,10453,11069,11261,11311
%N Primes that are the sum of 9 alternate primes.
%C Equivalently, primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4) + prime(k+6) + prime(k+8) + prime(k+10) + prime(k+12) + prime(k+14) + prime(k+16).
%H Muniru A Asiru, <a href="/A300395/b300395.txt">Table of n, a(n) for n = 1..5000</a>
%e 521 = 23 + 31 + 41 + 47 + 59 + 67 + 73 + 83 + 97 is a prime and 23, 31, 41, 47, 59, 67, 73, 83, 97 are alternate primes.
%e 563 = 29 + 37 + 43 + 53 + 61 + 71 + 79 + 89 + 101 is a prime and 29, 37, 43, 53, 61, 71, 79, 89, 101 are alternate primes.
%p select(isprime,[seq(sum(ithprime(2*i+k),i=0..8),k=1..200)]);
%o (GAP) P:=Filtered([1..10000],IsPrime);;
%o Filtered(List([1..200],k->Sum([0..8],i->P[2*i+k])),IsPrime);
%Y Cf. Primes that are the sum of k alternate primes: A068363 (k=3), A068364 (k=5), A300394 (k=7), this sequence (k=9).
%K nonn
%O 1,1
%A _Muniru A Asiru_, Mar 05 2018