

A146362


Primes p such that continued fraction of (1+Sqrt[p])/2 has period 17 : primes in A146340.


1



521, 617, 709, 1433, 1597, 2549, 2909, 3581, 3821, 4013, 4649, 5501, 5693, 5813, 6197, 7853, 8093, 8573, 9281, 9677, 10597, 10973, 11273, 13109, 13613, 15413, 15641, 15737, 16001, 16477, 17093, 20261
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..32.


MATHEMATICA

$MaxExtraPrecision = 4000; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[Prime[n]])/2, 3000]; m = 1; While[k[[s]] != k[[s + m]]  k[[s + m]] != k[[s + 2 m]]  k[[s + 2 m]] != k[[s + 3 m]]  k[[s + 3 m]] != k[[s + 4 m]]  k[[s + 4 m]] != k[[s + 5 m]], m++ ]; s = s + 1; While[k[[s]] != k[[s + m]]  k[[s + m]] != k[[s + 2 m]]  k[[s + 2 m]] != k[[s + 3 m]]  k[[s + 3 m]] != k[[s + 4 m]]  k[[s + 4 m]] != k[[s + 5 m]], m++ ]; s = s + 1; While[k[[s]] != k[[s + m]]  k[[s + m]] != k[[s + 2 m]]  k[[s + 2 m]] != k[[s + 3 m]]  k[[s + 3 m]] != k[[s + 4 m]]  k[[s + 4 m]] != k[[s + 5 m]]; AppendTo[aa, m]], {n, 1, 1495}]; bb = {}; Do[If[aa[[n]] == 17, AppendTo[bb, Prime[n]]], {n, 1, Length[aa]}]; bb (*Artur Jasinski*)


CROSSREFS

A000290, A050950A050969, A078370, A146326A146345, A146348A146360.
Sequence in context: A300395 A139663 A146340 * A050966 A113158 A004928
Adjacent sequences: A146359 A146360 A146361 * A146363 A146364 A146365


KEYWORD

nonn


AUTHOR

Artur Jasinski, Oct 30 2008


EXTENSIONS

Period length in definition corrected, 2579, 5003 removed, 5813 inserted by R. J. Mathar, Sep 06 2009


STATUS

approved



