|
|
A146362
|
|
Primes p such that continued fraction of (1+Sqrt[p])/2 has period 17 : primes in A146340.
|
|
1
|
|
|
521, 617, 709, 1433, 1597, 2549, 2909, 3581, 3821, 4013, 4649, 5501, 5693, 5813, 6197, 7853, 8093, 8573, 9281, 9677, 10597, 10973, 11273, 13109, 13613, 15413, 15641, 15737, 16001, 16477, 17093, 20261
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
MATHEMATICA
|
$MaxExtraPrecision = 4000; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[Prime[n]])/2, 3000]; m = 1; While[k[[s]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]] || k[[s + 4 m]] != k[[s + 5 m]], m++ ]; s = s + 1; While[k[[s]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]] || k[[s + 4 m]] != k[[s + 5 m]], m++ ]; s = s + 1; While[k[[s]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]] || k[[s + 4 m]] != k[[s + 5 m]]; AppendTo[aa, m]], {n, 1, 1495}]; bb = {}; Do[If[aa[[n]] == 17, AppendTo[bb, Prime[n]]], {n, 1, Length[aa]}]; bb (*Artur Jasinski*)
|
|
CROSSREFS
|
A000290, A050950-A050969, A078370, A146326-A146345, A146348-A146360.
Sequence in context: A300395 A139663 A146340 * A050966 A113158 A004928
Adjacent sequences: A146359 A146360 A146361 * A146363 A146364 A146365
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Artur Jasinski, Oct 30 2008
|
|
EXTENSIONS
|
Period length in definition corrected, 2579, 5003 removed, 5813 inserted by R. J. Mathar, Sep 06 2009
|
|
STATUS
|
approved
|
|
|
|