login
A300394
Primes that are the sum of 7 alternate primes.
2
151, 229, 313, 373, 401, 433, 467, 659, 691, 977, 1051, 1283, 1361, 1597, 1787, 1867, 1987, 2339, 3023, 3067, 3187, 4051, 4091, 4129, 4337, 4373, 4723, 5009, 5209, 5419, 5647, 5849, 5897, 6269, 6329, 6473, 6971, 7243, 7643, 7853, 8017, 8287, 8501, 8609, 8669
OFFSET
1,1
COMMENTS
Equivalently, primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4) + prime(k+6) + prime(k+8) + prime(k+10) + prime(k+12).
LINKS
EXAMPLE
151 = 3 + 7 + 13 + 19 + 29 + 37 + 43 is a prime and 3, 7, 13, 19, 29, 37, 43 are alternate primes.
229 = 11 + 17 + 23 + 31 + 41 + 47 + 59 is a prime and 11, 17, 23, 31, 41, 47, 59 are alternate primes.
MAPLE
select(isprime, [seq(sum(ithprime(2*i+k), i=0..6), k=1..210)]);
PROG
(GAP) P:=Filtered([1..10000], IsPrime);;
Filtered(List([1..210], k->Sum([0..6], i->P[2*i+k])), IsPrime);
CROSSREFS
Cf. Primes that are the sum of k alternate primes: A068363 (k=3), A068364 (k=5), this sequence (k=7), A300395 (k=9).
Sequence in context: A185936 A050969 A247346 * A142225 A334769 A334931
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Mar 05 2018
STATUS
approved