login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299845
a(n) = hypergeom([-n, n - 1], [1], -4).
3
1, 1, 25, 425, 7025, 116625, 1951625, 32903225, 558265825, 9522632225, 163160773625, 2806202183625, 48420275891025, 837813745045425, 14531896733426025, 252593595973313625, 4398859688478578625, 76733590756134492225, 1340547988367851940825, 23451231922182584693225
OFFSET
0,3
LINKS
FORMULA
4*n*(n-2)^2*a(n) + 4*(n-1)^2*(n-3)*a(n-2) - 4*(2*n-3)*(9*n^2-27*n+17)*a(n-1) = 0. - Robert Israel, Mar 21 2018
a(n) ~ 2^(-3/2) * 5^(3/4) * phi^(6*n - 3) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 05 2018
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*Gamma(n + 1)*Gamma(n - 1)/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1)) for n >= 2. - Detlef Meya, May 22 2024
MAPLE
f:= gfun:-rectoproc({4*n*(n-2)^2*a(n)+4*(n-1)^2*(n-3)*a(n-2)-4*(2*n-3)*(9*n^2-27*n+17)*a(n-1)=0,
a(0)=1, a(1)=1, a(2)=25}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Mar 21 2018
MATHEMATICA
a[n_] := Hypergeometric2F1[-n, n - 1, 1, -4]; Table[a[n], {n, 0, 19}]
a[0]:=1; a[1]:=1; a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1]), {k, 0, n}]; Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 16 2018
STATUS
approved