OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..798
FORMULA
4*n*(n-2)^2*a(n) + 4*(n-1)^2*(n-3)*a(n-2) - 4*(2*n-3)*(9*n^2-27*n+17)*a(n-1) = 0. - Robert Israel, Mar 21 2018
a(n) ~ 2^(-3/2) * 5^(3/4) * phi^(6*n - 3) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 05 2018
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*Gamma(n + 1)*Gamma(n - 1)/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1)) for n >= 2. - Detlef Meya, May 22 2024
MAPLE
f:= gfun:-rectoproc({4*n*(n-2)^2*a(n)+4*(n-1)^2*(n-3)*a(n-2)-4*(2*n-3)*(9*n^2-27*n+17)*a(n-1)=0,
a(0)=1, a(1)=1, a(2)=25}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Mar 21 2018
MATHEMATICA
a[n_] := Hypergeometric2F1[-n, n - 1, 1, -4]; Table[a[n], {n, 0, 19}]
a[0]:=1; a[1]:=1; a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1]), {k, 0, n}]; Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 16 2018
STATUS
approved