login
A025951
Expansion of 1/((1-2x)(1-3x)(1-8x)(1-12x)).
1
1, 25, 423, 6125, 82103, 1054725, 13214671, 163046125, 1992333255, 24194295125, 292622085119, 3529789897725, 42504079369207, 511221761969125, 6144043634254767, 73803583579040525, 886243482821361959
OFFSET
0,2
FORMULA
a(n) = -2*2^n/15 +3*3^n/5 -64*8^n/15 +24*12^n/5. - R. J. Mathar, Jun 20 2013
a(0)=1, a(1)=25, a(2)=423, a(3)=6125, a(n)=25*a(n-1)-202*a(n-2)+ 600*a(n-3)- 576*a(n-4). - Harvey P. Dale, Mar 08 2014
MAPLE
A025951:=n->-2*2^n/15 +3*3^n/5 -64*8^n/15 +24*12^n/5; seq(A025951(n), n=0..30); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
CoefficientList[Series[1/((1-2x)(1-3x)(1-8x)(1-12x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{25, -202, 600, -576}, {1, 25, 423, 6125}, 30] (* Harvey P. Dale, Mar 08 2014 *)
CROSSREFS
Sequence in context: A021964 A022456 A020593 * A021944 A299845 A020499
KEYWORD
nonn,easy
AUTHOR
STATUS
approved