login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021964
Expansion of 1/((1-x)(1-4x)(1-9x)(1-11x)).
1
1, 25, 422, 6050, 79563, 993675, 12002224, 141692500, 1645717205, 18887136125, 214818117306, 2426541462150, 27263857999327, 305049644712175, 3401871310224068, 37837512809631800, 419965002207076329
OFFSET
0,2
FORMULA
a(n) = (12*11^(n+3) - 21*9^(n+3) + 4^(n+5) - 7)/1680. - Yahia Kahloune, Jun 26 2013
a(0)=1, a(1)=25, a(2)=422, a(3)=6050; for n>3, a(n) = 25*a(n-1) -203*a(n-2) +575*a(n-3) -396*a(n-4). - Vincenzo Librandi, Jul 11 2013
a(0)=1, a(1)=25; for n>1, a(n) = 20*a(n-1) -99*a(n-2) +(4^n - 1)/3. - Vincenzo Librandi, Jul 11 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - x) (1 - 4 x) (1 - 9 x) (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 11 2013 *)
LinearRecurrence[{25, -203, 575, -396}, {1, 25, 422, 6050}, 20] (* Harvey P. Dale, Aug 24 2021 *)
PROG
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-4*x)*(1-9*x)*(1-11*x)))); /* or */ I:=[1, 25, 422, 6050]; [n le 4 select I[n] else 25*Self(n-1)-203*Self(n-2)+575*Self(n-3)-396*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 11 2013
CROSSREFS
Sequence in context: A025953 A020595 A001456 * A022456 A020593 A025951
KEYWORD
nonn,easy
AUTHOR
STATUS
approved