login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300946
Rectangular array A(n, k) = (-1)^k*hypergeom([-k, k + n/2 - 1/2], [1], 4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
5
1, 1, 1, 1, 3, 19, 1, 5, 33, 239, 1, 7, 51, 387, 3011, 1, 9, 73, 587, 4737, 38435, 1, 11, 99, 847, 7123, 59523, 496365, 1, 13, 129, 1175, 10321, 89055, 761121, 6470385, 1, 15, 163, 1579, 14499, 129367, 1135005, 9854211, 84975315
OFFSET
0,5
EXAMPLE
Array starts:
[0] 1, 1, 19, 239, 3011, 38435, 496365, 6470385, ... [A299864]
[1] 1, 3, 33, 387, 4737, 59523, 761121, 9854211, ... [A299507]
[2] 1, 5, 51, 587, 7123, 89055, 1135005, 14660805, ... [A245926]
[3] 1, 7, 73, 847, 10321, 129367, 1651609, 21360031, ... [A084768]
[4] 1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, ... [A245927]
[5] 1, 11, 129, 1579, 19841, 253707, 3284737, 42924203, ...
[6] 1, 13, 163, 2067, 26547, 344535, 4508877, 59402397, ...
MATHEMATICA
Arow[n_, len_] := Table[(-1)^k Hypergeometric2F1[-k, k + n/2 - 1/2, 1, 4], {k, 0, len}]; Table[Print[Arow[n, 7]], {n, 0, 6}];
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 16 2018
STATUS
approved