login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364298
Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 + x) * Legendre_P(k, (1 - x)/(1 + x))^(-n) for n >= 1, k >= 0.
6
1, 1, 1, 1, 3, 19, 1, 5, 73, 721, 1, 7, 163, 3747, 49251, 1, 9, 289, 10805, 329001, 5370751, 1, 11, 451, 23623, 1179251, 44127003, 859748023, 1, 13, 649, 43929, 3100001, 190464755, 8405999785, 190320431953, 1, 15, 883, 73451, 6751251, 589050007, 42601840975, 2160445363107
OFFSET
1,5
COMMENTS
In the square array A364113, the k-th entry in row n is defined as [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n. Here we essentially extend A364113 to negative values of n.
The two types of Apéry numbers A005258 and A005259 are related to the Legendre polynomials by A005258(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x)) and A005259(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^2 and thus form rows 1 and 2 of the array A364113
Both types of Apéry numbers satisfy the supercongruences
1) u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r))
and the shifted supercongruences
2) u(n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r))
for all primes p >= 5 and positive integers n and r.
We conjecture that each row sequence of the present table satisfies the same pair of supercongruences.
EXAMPLE
Square array begins
n\k| 0 1 2 3 4 5 6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 | 1 1 19 721 49251 5370751 859748023
2 | 1 3 73 3747 329001 44127003 8405999785
3 | 1 5 163 10805 1179251 190464755 42601840975
4 | 1 7 289 23623 3100001 589050007 152184210193
5 | 1 9 451 43929 6751251 1479318759 434790348679
6 | 1 11 649 73451 12953001 3219777011 1062573281785
MAPLE
T(n, k) := coeff(series(1/(1+x)* LegendreP(k, (1-x)/(1+x))^(-n), x, 11), x, k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 1..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n-1), n = 1..10);
CROSSREFS
A364299 (row 1), A364300 (row 2), A364301 (main diagonal), A364302 (first subdiagonal). Cf. A005258, A005259, A143007, A364113.
Sequence in context: A227882 A189799 A300946 * A078096 A139429 A293699
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Jul 18 2023
STATUS
approved