login
A298934
Number of partitions of n^2 into distinct cubes.
4
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 3, 3, 1, 0, 3, 0, 2, 4, 0, 0, 1, 0, 0, 2, 3, 1, 1, 0, 6, 3, 6, 1, 6, 0, 3, 9, 0, 6, 6, 7, 0, 10, 3, 3, 6, 0, 8, 6, 13, 2, 10, 9, 10, 19, 2, 14, 21, 7, 2, 25
OFFSET
0,16
FORMULA
a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^3)).
a(n) = A279329(A000290(n)).
EXAMPLE
a(15) = 2 because we have [216, 8, 1] and [125, 64, 27, 8, 1].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(n>i^2*(i+1)^2/4, 0, b(n, i-1)+
`if`(i^3>n, 0, b(n-i^3, i-1))))
end:
a:= n-> b(n^2, n):
seq(a(n), n=0..100); # Alois P. Heinz, Jan 29 2018
MATHEMATICA
Table[SeriesCoefficient[Product[1 + x^k^3, {k, 1, Floor[n^(2/3) + 1]}], {x, 0, n^2}], {n, 0, 84}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 29 2018
STATUS
approved