OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q^3)^3 * eta(q^8) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [1, 1, -2, 2, 1, -2, 1, 1, -2, 1, 1, -3, 1, 1, -2, 1, 1, -2, 1, 2, -2, 1, 1, -3, ...].
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^6 + 4*x^8 + 4*x^9 + ...
G.f. = q + q^3 + 2*q^5 + 3*q^9 + 2*q^11 + 4*q^13 + 4*q^17 + 4*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 QPochhammer[ -x^4, x^4] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^24 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2018
STATUS
approved