login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298930
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
6
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 2, 1, 2, 0, 0, 11, 4, 4, 11, 0, 0, 13, 3, 11, 3, 13, 0, 0, 34, 7, 23, 23, 7, 34, 0, 0, 65, 14, 72, 94, 72, 14, 65, 0, 0, 123, 35, 201, 255, 255, 201, 35, 123, 0, 0, 266, 89, 597, 666, 955, 666, 597, 89, 266, 0, 0, 499, 242, 1717, 2720, 3569, 3569, 2720
OFFSET
1,8
COMMENTS
Table starts
.0...0..0....0....0.....0......0.......0........0.........0.........0
.0...1..3....2...11....13.....34......65......123.......266.......499
.0...3..1....4....3.....7.....14......35.......89.......242.......643
.0...2..4...11...23....72....201.....597.....1717......5183.....15479
.0..11..3...23...94...255....666....2720.....8571.....30093....106192
.0..13..7...72..255...955...3569...15031....61046....253624...1067751
.0..34.14..201..666..3569..15163...77576...375845...1886321...9434661
.0..65.35..597.2720.15031..77576..491338..2806944..16889645.100996053
.0.123.89.1717.8571.61046.375845.2806944.19329083.138482223.988954778
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
k=3: [order 18] for n>19
k=4: [order 60] for n>61
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1
..1..0..1..0. .0..0..0..0. .0..1..1..0. .0..1..0..1. .0..1..0..1
..1..1..0..0. .0..0..0..0. .1..0..1..0. .1..0..0..1. .1..1..0..0
..1..0..1..0. .1..1..1..1. .1..0..1..0. .0..1..0..1. .0..1..0..1
..0..0..1..1. .1..1..1..1. .1..1..0..0. .0..0..1..1. .0..0..1..1
CROSSREFS
Column 2 is A297870.
Column 3 is A298254.
Sequence in context: A298139 A298087 A298259 * A298895 A179311 A309983
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 29 2018
STATUS
approved