The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298934 Number of partitions of n^2 into distinct cubes. 4

%I

%S 1,1,0,1,0,0,1,0,1,0,1,0,0,0,0,2,0,1,0,0,0,1,0,0,1,0,0,3,1,0,0,0,0,0,

%T 0,3,3,1,0,3,0,2,4,0,0,1,0,0,2,3,1,1,0,6,3,6,1,6,0,3,9,0,6,6,7,0,10,3,

%U 3,6,0,8,6,13,2,10,9,10,19,2,14,21,7,2,25

%N Number of partitions of n^2 into distinct cubes.

%H Alois P. Heinz, <a href="/A298934/b298934.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%H <a href="/index/Par#part">Index entries for related partition-counting sequences</a>

%F a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^3)).

%F a(n) = A279329(A000290(n)).

%e a(15) = 2 because we have [216, 8, 1] and [125, 64, 27, 8, 1].

%p b:= proc(n, i) option remember; `if`(n=0, 1,

%p `if`(n>i^2*(i+1)^2/4, 0, b(n, i-1)+

%p `if`(i^3>n, 0, b(n-i^3, i-1))))

%p end:

%p a:= n-> b(n^2, n):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 29 2018

%t Table[SeriesCoefficient[Product[1 + x^k^3, {k, 1, Floor[n^(2/3) + 1]}], {x, 0, n^2}], {n, 0, 84}]

%Y Cf. A000290, A000578, A030272, A030273, A218495, A259792, A279329, A298672, A298848, A298935.

%K nonn

%O 0,16

%A _Ilya Gutkovskiy_, Jan 29 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 13:36 EDT 2020. Contains 333305 sequences. (Running on oeis4.)