login
A298668
Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
2
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
OFFSET
0,11
LINKS
Wenqin Cao, Emma Yu Jin, and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Applied Mathematics (2019); see also author's copy
FORMULA
T(n,k) = (k-1)! * Stirling2(n-k+1,k) for k>0, T(n,0) = A000007(n).
T(n,k) = Sum_{j=0..k-1} (-1)^j*C(k-1,j)*(k-j)^(n-k) for k>0, T(n,0) = A000007(n).
T(n,k) = (k-1)! * A136011(n,k) for n, k >= 1.
Sum_{j>=0} T(n+j,j) = A076726(n) = 2*A000670(n) = A000629(n) + A000007(n).
EXAMPLE
T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3;
0, 1, 7, 2;
0, 1, 15, 12;
0, 1, 31, 50, 6;
0, 1, 63, 180, 60;
0, 1, 127, 602, 390, 24;
0, 1, 255, 1932, 2100, 360;
0, 1, 511, 6050, 10206, 3360, 120;
0, 1, 1023, 18660, 46620, 25200, 2520;
...
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..14);
# second Maple program:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
# third Maple program:
T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
`if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
MATHEMATICA
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)
CROSSREFS
Columns k=0-11 give (offsets may differ): A000007, A057427, A168604, A028243, A028244, A028245, A032180, A228909, A228910, A228911, A228912, A228913.
Row sums give A229046(n-1) for n>0.
T(2n+1,n+1) gives A000142.
T(2n,n) gives A001710(n+1).
Sequence in context: A350248 A297786 A214407 * A137680 A248722 A201663
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jan 24 2018
STATUS
approved