login
A296844
Decimal expansion of ratio-sum for A296843; see Comments.
3
4, 4, 6, 5, 2, 0, 5, 2, 9, 3, 4, 2, 0, 7, 5, 5, 5, 3, 6, 4, 1, 2, 6, 7, 8, 3, 7, 3, 0, 1, 3, 0, 3, 6, 0, 4, 6, 4, 1, 5, 6, 3, 1, 6, 5, 1, 8, 4, 3, 6, 4, 9, 4, 0, 1, 2, 2, 3, 2, 7, 5, 6, 0, 2, 4, 7, 3, 1, 7, 4, 6, 3, 8, 9, 3, 0, 4, 6, 8, 4, 0, 7, 6, 1, 0, 0
OFFSET
1,1
COMMENTS
Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296843, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425..A296434 for related ratio-sums and A296452..A296461 for related limiting power-ratios.
EXAMPLE
ratio-sum = 4.465205293420755536412678373013036046415...
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; b[3] = 6;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n + 1];
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296843 *)
GoldenRatio; s = N[Sum[-g + a[n]/a[n - 1], {n, 1, 1000}], 200];
StringJoin[StringTake[ToString[s], 41], "..."]
Take[RealDigits[s, 10][[1]], 100] (* A296844 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Jan 12 2018
STATUS
approved