login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294629
Partial sums of A294628.
3
4, 16, 28, 56, 68, 120, 132, 192, 228, 296, 308, 440, 452, 536, 612, 736, 748, 920, 932, 1112, 1204, 1320, 1332, 1624, 1676, 1808, 1916, 2144, 2156, 2496, 2508, 2760, 2884, 3048, 3156, 3600, 3612, 3792, 3932, 4336, 4348, 4784, 4796, 5120, 5388, 5600, 5612, 6224, 6292, 6640, 6812, 7184, 7196, 7728, 7868, 8384
OFFSET
1,1
COMMENTS
a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the stepped pyramid described in A294630.
Number of terms less than 10^k, k=1,2,3,...: 1, 5, 19, 61, 195, 623, 1967, 6225, ... - Muniru A Asiru, Mar 04 2018
FORMULA
a(n) = 4*A294016(n).
a(n) = A016742(n) - 8*A004125(n).
a(n) = A016742(n) - 4*A067436(n).
a(n) = A243980(n) - 4*A004125(n).
a(n) = A243980(n) - 2*A067436(n).
EXAMPLE
Illustration of initial terms (n = 1..6):
. _ _ _ _ _ _
. _ _ _ _ _| | |_
. _ _ _ _ _| | |_ | | |
. _ _ | | | | _|_ | | _|_ |
. |_|_| |_ _|_ _| |_ _| |_ _| |_ _ _| |_ _ _|
. |_|_| | | | | |_ _| | | |_ _| |
. |_ _|_ _| |_ | _| | | |
. 4 |_ _|_ _| |_ | _|
. 16 |_ _ _|_ _ _|
. 28
. 56
.
. _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _| | |_
. | | | _| | |_
. _ _| | |_ _ | | |
. | _ _|_ _ | | _|_ |
. | | | | | _| |_ |
. |_ _ _| |_ _ _| |_ _ _ _| |_ _ _ _|
. | | | | | |_ _| |
. | |_ _ _ _| | | |_ _| |
. |_ _ | _ _| | | |
. | | | |_ | _|
. |_ _ _|_ _ _| |_ | _|
. |_ _ _ _|_ _ _ _|
. 68
. 120
.
Note that for n >= 2 the structure has a hole (or hollow) in the center.
a(n) is the number of ON cells in the n-th diagram.
MAPLE
with(numtheory): seq(sum(8*(sigma(k)-k+(1/2)), k=1..n), n=1..1000); # Muniru A Asiru, Mar 04 2018
MATHEMATICA
f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@Array[f, 56] (* Robert G. Wilson v, Dec 12 2017 *)
PROG
(PARI) a(n) = 4*(sum(k=1, n, n\k*k) - sum(k=2, n, n%k)) \\ Iain Fox, Dec 10 2017
(PARI) first(n) = my(res = vector(n)); res[1] = 4; for(x=2, n, res[x] = res[x-1] + 8*(sigma(x) - x + (1/2))); res; \\ Iain Fox, Dec 10 2017
(GAP) List([1..1000], n->Sum([1..n], k->8*(Sigma(k)-k+(1/2)))); # Muniru A Asiru, Mar 04 2018
(Python)
from math import isqrt
def A294629(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1, s+1))-n**2<<2 # Chai Wah Wu, Oct 22 2023
CROSSREFS
For other related diagrams see A294630 (partial sums), A294016 and A237593.
Sequence in context: A332044 A273368 A209979 * A160410 A256534 A352205
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 05 2017
STATUS
approved