login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256534
Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition).
6
0, 4, 16, 28, 64, 76, 112, 172, 256, 268, 304, 364, 448, 556, 688, 844, 1024, 1036, 1072, 1132, 1216, 1324, 1456, 1612, 1792, 1996, 2224, 2476, 2752, 3052, 3376, 3724, 4096, 4108, 4144, 4204, 4288, 4396, 4528, 4684, 4864, 5068, 5296, 5548, 5824, 6124, 6448, 6796, 7168, 7564, 7984, 8428, 8896, 9388, 9904, 10444, 11008
OFFSET
0,2
COMMENTS
On the infinite square grid at stage 0 there are no ON cells, so a(0) = 0.
At stage 1, four cells are turned ON forming a square, so a(1) = 4.
If n is a power of 2 so the structure is a square of side length 2n that contains (2n)^2 ON cells.
The structure grows by the four corners as square waves forming layers of ON cells up the next square structure, and so on (see example).
Has the same rules as A256530 but here a(1) = 4 not 1.
Has a smoother behavior than A160410 with which shares infinitely many terms (see example).
A261695, the first differences, gives the number of cells turned ON at n-th stage.
FORMULA
For i = 1 to z: for j = 0 to 2^(i-1)-1: n = n+1: a(n) = 4^i + 3*(2*j)^2: next j: next i
It appears that a(n) = 4 * A236305(n-1), n >= 1.
EXAMPLE
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
4;
16;
28, 64;
76, 112, 172, 256;
268, 304, 364, 448, 556, 688, 844, 1024;
...
Right border gives the elements of A000302 greater than 1.
This triangle T(n,k) shares with the triangle A160410 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| |
. |_ _| | _ _ _ _ | | _ _ _ _ | |_ _|
. | | | _ _ | | | | _ _ | | |
. | | | | _|_|_|_ _|_|_|_ | | | |
. | | | |_| _ _ _ _ |_| | | |
. | | |_ _| | _|_ _|_ | |_ _| | |
. | |_ _ _| |_| _ _ |_| |_ _ _| |
. | | | | | | | |
. | _ _ _| _| |_ _| |_ |_ _ _ |
. | | _ _| | |_ _ _ _| | |_ _ | |
. | | | _| |_ _| |_ _| |_ | | |
. | | | | |_ _ _ _ _ _ _ _| | | | |
. | | | |_ _| | | | | |_ _| | | |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 304 ON cells, so a(10) = 304.
MATHEMATICA
{0}~Join~Flatten@ Table[4^i + 3 (2 j)^2, {i, 6}, {j, 0, 2^(i - 1) - 1}] (* Michael De Vlieger, Nov 03 2022 *)
PROG
(GW-BASIC) 10' a256534 First 2^z-1 terms: 20 z=6: defdbl a: for i=1 to z: for j=0 to 2^(i-1)-1: n=n+1: a(n)=4^i + 3*(2*j)^2: print a(n); : next j: next i: end
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 22 2015
STATUS
approved